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1. INTRODUCTION

Recently, a useful generalized form of paraxial wave optics has been

developed that car. treat paraxial wave propagation through any optical system

that can be characterized by a complex ABCD ray matrix. 1,2 It has been shown

how Huygens' integral for propagation through a cascaded series of

conventional elements, inciuding Gaussian-shaped limiting apertures located

arbitrarily along the optical oath, can be accomplished in one step, using the

appropriate (complex) ABCD matrix elements for that system. This approach has

been useful for handling complicated multielement optical resonators, as well

as resonators with the useful variable-reflectivity mirrors that are now being

developed.1

In Ref. 2, this approach has been generalized to the case of propagation

of partially coherent light and link propagation, including the effects of

tilt and random jitter of the optical elements and distributed random

inhomogeneities along the optical path (e.g., clear air turbulence and

aerosols). However, the results presented in Ref. 2 for propagation in the

presence of random inhomogeneities were limited to a real ABCD system (i.e.,

where all the ray matrix elements are real). Therefore, the results of Ref. 2

are limited to propagation through random media where no significant apertures

or stops are located between the input and output planes of the optical

system. Additionally, for propagation between conjugate image planes, the

overall B matrix element is identically zero (for real ABCD systems), and some

of the expressions in Section 7 and Appendix C of Ref. 2 must be applied

carefully because of the apparent singularities that result. We will show

that if the diffractive effects of the optical elements are included in the

analysis, no such singularities occur, and all the expressions yield finite

results.

Thus, the major thrust of this report is to consider propagation through

a rand-m medium in a general complex ABCD paraxial optical system. Explicit

y" J, .~ ar'- )r-wvp tor te "sutirg "curio-uroer sLaListic.i moments of

the complex optical field. In particular, we derive a general expression for

the mean irradiance of a point source, the mutual coherence function, the log-
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amplitude, the phase and wave structure function, and the variance of

irradiance for weak scintillation conditions. In Section 2, we ui.cuss some

general features of the scattered field through terms of second order in the

fluctuating part of the index of refraotion. In Section 3, we discuss th'

propagation of a point source and obtain an explicit expression for the mean

irradiance of a point source propagating through a complex ABCD system. In

Section 4, we present explicit results for various second-order moments of the

complex field. In Section 5, we present some specific results for the mean

square irradiance of a spherical wave for the Kolmogorov spectrum. We also

give explicit results for the conjugate image plane and Fourier transform

plane propagation geometries. Finally, in Section 6, we consider adaptive

optics through real ABCD systems and derive an expression for the mean

irradiance of an adaptive-optics laser transmitter through such systems.

The analysis in this report and in Ref. 2 applies primarily to optical

systems that contain apertures of Gaussian-shaped variations in amplitude

transmission across the optic axis. However, the analysis also applies, at

least as a first approximation, to any transversely varying system whose

transmission has a quadratic variation to first order near the optic axis.
1

Thus, any "soft" aperture whose transmission varies with transverse

coordinate, at least near the axis, in the approximate form

T(x) = To(1 - a2 x2 /2)

where To is the on-axis transmission and the coefficient a2 is given by

a I Ld 2 T(x)1
o dx2  

x=O

can be approximated to first order by a Gaussian aperture and thus by a

complex ABCD matrix. As a result, the complex paraxial analysis is a good

approximation as long as the resulting beam wave remains sufficiently close to

the axis so that la2 x 2/21 << 1 across the main portion of the beam.

4
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in ccntrast to propagation through real ABCD systems, the statistical

moments of the field that result after propagating through a complex ABCD

system are not spatially homogeneous. That is, the statistical moments depend

explicitly on the variables of interest rather than on the corresponding

difference variables. This dependence occurs bpeause the introduction of

finite limiting apertures destroys the spatial symmetry of the field of a

point source. For example, after propagating through a complex ABCD system,

the mean irradiance distribution of a point source is no longer uniformly

distributed over a sphere; rather, it is limited in space (i.e., it becomes a

beam wave). As a result, all statistical moments of the complex field are, in

general, explicit functions of absolute position variables rather than of

corresponding difference variables.

In this report, we consider the case where the intervening space between

optical elements is nearly that of free space with a refractive index given by

n 1 1 + n I . We assume the random quantity n I to have zero mean and a root

mean square value much less than unity. The present analysis is thus

restricted to a weakly inhomogeneous medium with an electrical conductivity

equal to zero and a magnetic permeability equal to one. We further assume

that the characteristic scale length of the inhomogeneities is much greater

than the optical wave length and that the characteristics of the medium do not

change appreciably during a period of oscillation of the electromagnetic

field. For example, at near IR and optical wavelengths, thi3 condition is

satisfied in the atmosphere. Additionally, we consider the propagation of

scalar monochromatic fields and omit the explicit time dependence in the

formulation presented below.

Finally, for simplicity in notation, we consider cylindrically symmetric

optical systems, because the extension to orthogonal systems is straight-

forward. In cylindrically symmetric optical systems, the ray transfer matrix

M is a 2 - 2 matrix given by

A B
M(C D) (1.1)

5Mj I



where A, B, C, and D are complex numbers. For the case considered here, where

the input and output planes are in free space

Det (M) AD - BC 1 (1.2)

6



2. GENERAL CONSIDERATIONS FOR THE SCAfTERED FIELD

In the intervening space between the optical elements, the scalar wave

equation is

V 2eU + k2 n 2( r)U = 0 (2.1)

where U is a typical component of the field, k is the optical wave number, and

n(r) 1 + n1 () (2.2)

where <n1 > : 0 and jnmj <(1. We indicate the statistical average by angular

brackets and the spatial coordinate ir = (r.z), where z is assumed to be along

the optical axis and r is a two-dimensional vector transverse to the optical

axis. As indicated in Fig. 1, we assume, without loss of generality, that the

input plane is located at z = 0 and the output plane is at the plane z L.

We employ the Rytov transformation,3 which consists of setting U exp[]

in Eq. (2.1) and thus obtaining

2 (~2 2 .2
V2 +(V) + k (1 + n 1(1r) =0

It is customary to seek a solution for as a power series in E (2n I + n 
2

= [ '

m=O

where 4, is zero order in c1 , 01 is first order in E1, and so forth.

In this report, we include terms through second order in £ I. The second-

order Rytov approximation

U(r) = exp[o (r) + t1*(h + 02(')] (2.3)

7



INPUT PLANE OUTPUT PLANE

Ui Complex paraxial u0
(r,0) 11ABCD (p, L)

-optical system ____

Fig. 1. Schematic Representation of Propagation through an Arbitrary ABCD
Optical System
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which contains all terms through second order in cI' is the lowest order non-

trivial approximation that conserves energy to the order of the approximation

and hat gives the correct average field and the correct phase and intensity

statistics.4

Now Uo = exp yG is the field in the absence of the inhomogeneities and is

given in the paraxial approximation by
2

U o( L) exp (-ikL) f d2r U (r) exp I- 1- (Dp2 - 2r-p + Ar2 )1 (2.4)

where Ui is the field in the initial plane and A, B, and D are the ray matrix

elements of the overall system between the input and output planes. The

quantity L appearing on the right-hand side of Eq. (2.4) is the optical path

length of a ray traveling along the optic axis. Because of the approximati ns

used, we assume that this quantity is equal to the total propagation distance

between the input and output planes.

To within an arbitrary constant, the general solution for o is given by

U) 1  (2.5)

where U I is the first-order Born approximation

U -k2 f d3 r1 G( , 1 ) C 1(r )Uo('r (2.6)

where

E( r) = 2n() 2 r*) (2.7)

The integration in Eq. (2.6) extends over the region of space where n1 (i) is

different from zero, and G(', 1 ) is the appropriate Green function in the

absence of the inhomogeneities.

For direct propagation between transverse planes located at z. and z2 , S

the Green function, in the paraxial approximation, is given by

9



G( r r~ ) rV 2 1
exp [-ik(z 2 - z1 )) ik(£ 1  £2) 2

=- zl exp[ - 2(z2
-4-f(z 2 - z )2z2- z 1)

In the presence of a complex paraxial ABCD system, this Green function is now

given by
1 ,2

exp [-ik(z 2 - z )] exp ik 2 r 2r
G(' r 2 4B 2B z 2 -2 + 1 2 2

(2.8)

where we have employed the notation Az,,z2 to represent the A-matrix element
for propagation between zand 2 and similarly for the quantities Bz andfr p aZ2
D zlz

2 "

The second-order Rytov approximation is given by
4

U2  - 1r) -

2 r = -~h r (2.9)

where is the first-order Rytov approximation. The quantity U2 , the second-

order Born approximation, is given by

U2( ) = (-ke) 2fd3r1d 3reG(', i)e1(ir)G(1, 2 )E1(r2 ) Uo(2 (2.10)

where, for the complex paraxial system, Uo is given by Eq. (2.4) and G is

given by Eq. (2.8).

Equation (2.3) c-n be used to compute all second-order statistical

moments of the field, as obtained in a plane transverse to the optic axis at

propagation distance L, through terms of second order in the fluctuations. We

can show that all such second moments can be obtained from three basic field

moments.

10



21 (2 (2. 1 a)

F2 -<i(P21 ) 1(22 (2.11b)

and

F 3 _ (I .. . . | II (2.lie)

where

0 U (2.12)
2 U2

0

and I is given by Eq. (2.5).

For example, the average field <U= U. exp(<, 2 >), the mutual coherence

function, is given by

r( i, 'P2 ) : <U ( I)U ( P2 )>

- explo2(P)> + <2(22)> + <i(2i)P*i(P 2 )>] (2.13)

and the normalized variance of irradiance (under weak scintillation

conditions) is given by

2( )2 ( >2o(p) :- 1
I <I(P)> 2

exp [4x2 () 1

where

(2) Re(F 2 + F3  (2.14)

and Re denotes the real part.

11



To obtain the field in the output plane from an arbitrary field U i in the

input plane (e.g., via a Huygens-Fresnel integral), it is sufficient to

calculate the quantities F1 , F2 , and F3 for the special case where the sources

of the fields are point sources. To calculate these quantities, we denote,

by 0i1(p,L) and 02 (p,), the first- and second-order Rytov approximation to the

optical field at (p,L) due to a point source located at (r,O), respectively.

The calculation of the statistical quantities FI, F2, and F3 is given in the

Appendix, with the results that

F1 z _2(pr)>

2 L 2

-uk2  f dz Sd K n(K;z) (2.15)
00

F2 1 ( lI,[I)1(P2,L2)>

2vk 2  L dz j d2 K 0n(K;z)exp(-K 28i/k)

x exp (-iK.([p Re(B Oz/B) + p Re (BzL/B)]

+ 2i [P Im(B Oz/B) + R Im(B zL/B)] )  (2.16)

F 3  1 ,, ( IEi),i( P2 , 2 )>
Ozz

2u 2  dz j d2 K 0n(K;z) exp(iK 2/k)
* 0

exp {-iK-[p(BOz/B) + /(B)zLI/B) (2.17)

where 0 n(K;z) is the three-dimensional spectrum of the index of refractive

fluctuations at propagation distance z evaluated at K. = 0. The quantities

12



B02, BzL, and B - BOL are the P-matrix elements for propagation through the

system from 0 to z, z to L, and 0 co L, respectively

Boz BzL
a 8 B (2.18)

i = Im(s), where Im denotes the imaginary part, and

P = P- P2 (2.19a)

E_ = 2 (P-1  + p-2)  (2.19b)

r = [1 - L2 (2.19c)

and

_= (rI + r2 (2.19d)

In general, Boz and BzL (and hence 8 ) depend on z, depending on the optical

system under consideration. Through these quantities, the optical system

affects the second-order statistical moments of point sources. For the

important case of an isotropic power spectrum (e.g., the Kolmogorov spectrum),

d2 X , 2KdK and

exp (-iK.V) 0 J0 (KIVI)

where Jo is the zero-order Bessel function of the first kind and V is the

(complex) vector within the braces in Eqs. (2.16) and (2.17). In the rest of

this report, we will be dealing with spatially isotropic power spectra.

Examiniation of Eq. (2.15) reveals that, through terms of second order in

the fluctuations, the quantity F1 = <¢2 > = <U2>/U 0 is real and is independent

of the observation point and the matrix elements of the optical system. In

particular, Eq. (2.15) is identical to what is obtained for line-of-sight

propagation over a distance L. As indicated in Eqs. (2.16) and (2.17), the

13
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quantities F2 and F3 depend on the specific properties of the optical system

and are spatially nonhomogeneous, because they depend explicitly on the

variables rI, £2, I, and 12" However, for the special case of real ABCD

systems, F2 and F3 are spatially inhomogeneous, because there are no limiting

apertures that inhibit the propagation of spherical waves through the

medium. Note that for line-of-sight propagation, BOz/B = z/L, BzL/B

(L - z), and a = z(L - z)/L. In this case, Eqs. (2.16) and (2.17) become

identical to the corresponding results given in the literature.
3

Thus, Eqs. (2.15)-(2.17) contain all the effects of the arbitrary complex

paraxial ABCD system on the second-order statistical properties of point

sources. They are now the basis for calculating all the second-order

statistical moments of interest.

I

14
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3. MEAN FIELD AND IRRADIANCE OF A POINT SOURCE

Consider a point source located at the origin of coordinates, which

radiates a total power W. To within a multiplicative phase factor, we can

show from Eq. (2.4) that the field in the observation plane in the absence of

the inhomogeneities is given by

1,2 i~21Uo(P) = ( 1B ) exp (-ikL - !LDD) (3.1)

0 4 flBI 2  2B "

from which it follows that the irradiance 10 = IU012 is given by

W0 (p) 2 exp [-klIm(D/B)lp 2 (3.2)
4,IBI

For real ABCD systems, I a W/4mB 2 , which, for line-of-sight propagation,

reduces to Io = W/4wL 2 .

Examination of Eq. (3.2) reveals that in the presence of a complex

paraxial ABCD optical system, the irradiance distribution of a point source

has a Gaussian shape with a 1/e2 spot radius p0 given by

2 2 (33)0c k kIm(D/B)j 33

As an elementary example, consider a point source located at distance z, to

the left of a Gaussian lens of real focal length f and l/e2 transmission

radius o (see Fig. 2). If the observation plane is in the right-hand focal

plane of the lens, the results are

B F (I 2z i

B=F(1- 1 (3.4)
ko

2

and

z 1 2zli
D z I - - - 2  (3.5)

f a2

15
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INPUT PLANE LENS OUTPUT PLANE

POINT
SOURCE

Fig. 2. Propagation Geometry of a Point Source Located a Distance z o the
Left of a "Thin Gaussian" Lens of Real Focal Length f arid I/e
Transmission Radius a. The output plane is assumed to be in the
right-hand focal plane of the lens.
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If we substitute Eqs. (3.4) and (3.5) into Eq. (3.3), the result is

2 2 2 (3.6)
PO (fo/z 1 ) + (2f/ka)

The squart, of the l/e2 beam radius is a sum of two terms: the first term, on

the right-hand side of Eq. (3.6), is a geometric magnification; the second

term gives the diffraction effects of the finite lens.

When inhomogeneities are present, the mean field is given by

,,U( =) >  = U0 <exp [4,%(Q) + 4,2 (P)I> (3.7)

If g = ln(y) is a random variable through terms of second order in the

fluctuations with mean <g>40 and mean square <g2 >, then correct through terms
2

of the order of 2

<y> z exp [<g> + I <(g - <g>)2> (3.8)

This result may be used to obtain the average of the right-hand side of Eq.

(3.7). Hence, through terms of the order of E1 (= 4n 2

(U(p)> = U exp (<V2 >) (3.9)

where Uo is given by Eq. (3.1) and <o2 > is given by Eq. (2.15). Apart from

the Uo term, the average field of a point source is identical to that obtained

for line-of-sight propagation through the random medium.

The mean irradiance of a point source is obtained as

<I( =)> = (JU( )j 2> (3.10)

If we substitute U(p) = Uo(2) exp[4 1 (p) + *2(p)] into Eq. (3.10) and apply Eq.

(3.8) to obtain the average, the result is

<I(P)> = 1 (p) exp [A(p)] (3.11)

17



where 10 (p) is given by Eq. (3.2) and

A(p) z 2Re<o 2 > + (k, 1(P)12> (3.12)

If we substitute Eqs. (2.15) and (2.16), with r, = £2 = 0 and p, = 22 = P,

into Eq. (3.12), we obtain the following equation for an isotropic index of

refraction power spectrum

2 L

6(p) = 412 k f dz f dK KO n(K;z)
0 0

[exp(-K 2i/k)Io(2 IpK) - 11 (3.13)

where

= Im(BOz/B) (3.14)

and, in Eq. (3.13), 1o(x) is the zeroth-order Bessel function of the first

kind of imaginary argument. Equations (3.10) and (3.13) are the general

expressions for the mean irradiance profile of a point source propagating

through an aribtrary complex ABCD system in the presence of random media, as

specified by *n(K;z). For real ABCD systems, A(p) = 0, as it should because

of spatial symnetry. 4 Because Io(x) ? 1, the contribution to A(p) from the

Bessel function term is always greater than zero, indicating that the

inhomogeneities broaden the irradiance pattern.

For small values of p, one can readily obtain a power series expansion of

A(p) as
L

A(p) f -4-2k2  f dz fo dK K n(K;z)0 0n

x [1 - exp(-K 28/k) - p exr (-K 28/k)+...] (3.15)

18
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Consider the Kolmogorov spectrum in the inertial subrange
3

o (K;z) = 0.033 C2 (z) K-11 /3  (3.16)

where C 2(z) is the index structure constant profile. If we substitute
n

Eq. (3.16) into Eq. (3.15) and perform the integration over spatial frequency,

the result is

LA(p) -14.25 k7/6 f dz C2 (z)[8i(z)] 5 /6

+ 3.65 k2p2  f dz .. .[k8(z)) 1/6 (3.17)
0

For the propagation geometry illustrated in Fig. 2, with C2 1 0 between the
2n

point source and the lens only, and 7' >, k a we readily obtain

A(p) = - (1.62O/p )5/3 [1 - 1.25 (ko/2f) 2p 2+...] (318)

where

Po Z [1.46 k2 jf dz C2 (z)(z/zl)5 / 31- 3/ 5  (3.19)
0

is the spherical wave lateral coherence length of a spherical wave for

propagation between z = 0 and z = z I . From Eqs. (3.11) and 3.18), we see that

the first and second term on the right-hand side of Eq. (3.18) give the

inhomogeneities-induced reduction in the on-axis mean irradiance and beam

broadening.

19



4. GENERALIZED SECOND-ORDER MOMENTS

In this section, we present general expressions for various second-order

statistical moments that arise in propagation through complex ABCD systems in

a random medium.

4.1 CORRELATION FUNCTIONS

We have

41(pE) = x(P,r) - iS(2,L) (4.1)

where X(p,E) is the log-amplitude and S(2,E ) is the phase at a point 2 in the

output plane resulting from a point source at r in the input plane. For

simplicity in notation, we omit subscripts on both X and S. We can then show

that

B (P-1, 2 ; r1,r2 ) = <xip 1,r1 )x(22,r2 )> = 1Re(F2 + F3 ) (4.2)

B S( 1,p2; £1'2) = <S( 2 1,1)S(22,r2 )> = 1 Re(F F )  (4.3)

2 e( 2  3 )(43

and

BS(pIp 2 ; £iL 2) = S(2Ir 1)x(22,r2)) = 1 Im(F 2F3) (4.4)

where BX is the log-amplitude, BS is the phase, and B is the phase log-

amplitude correlation funQLions.

Except for adaptive optics, discussed in Section 6, the general two-point

to two-point moments are not of general interest, although they can be

obtained directly by substituting Eqs. (2.16) and (2.17) into Eqs. (4.2)-

(4.4). We restrict our attention to the special case of a single point source

located in the input plane at r = 0. Following the above procedure, we find

21



BX's(PlIP 2) 2-22 dzf dK KOn(K;z)exp(-K2i/k)
0 0 K2 a

{Re[J 0 (KIpacr +2iPa I)] cos (kr) J0(KPar)d (4.5)

where the T sign refers to the log-amplitude and phase correlation functions,

respectively, and

ar = Reo (4.6b)

Similarly

0 BSx(I, 2 ) = 272k
2 0 dz 0 dK KO n(K;z) exp(-K 2 Bi/k)
o 0

2

x {Im[J 0 (K lr + 2iPail)] + sin ( r) Jo(KPcr)} (4.7)

For the special case where P1 = -22, Eqs. (4.5) and (4.7) become

BS(,-) 22 k2 0 dz 0 dK KO (K;z)exp(-K 28/k)o 0 1
K2

x T cos( kr )1Jo(2Kpar) (4.8)

and

BS( ,-P) = 2w2k2 f dz 0 dK Kon (K;z) exp(-K 28i/k)o 01

@ KB

sin( k r) Jo( 2Kpar) (4.9)

The variance of log-amplitude, phase, and phase log-amplitude is obtained from

Eqs. (4.5) and (4.6) by setting 1 
= 22" We find
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<X> BxS (P")
2 L L

2f k2  f dz f dK KOn(K;z) exp(-K 28i/k)
o 01

K281 0 o(2Kp ); cos(- kl (4.10)

and

<S> = BSx(2,p)

2 L 
221 k dz 0! dK KO n(K;z) exp(-K-6./k)

o o

K
2

x i ( k r (4.11)

4.2 MUTUAL COHERENCE FUNCTION

The mutual coherence function (MCF) is defined as

F(P-1, 2 )  = U(P1U (P2)> (4.12)

We omit the deterministic contribution, U0 (21) U0 (P2), to the MCF. This

contribution can be obtained directly from Eq. (3.1). We now have

U(p) = exp[l(p) + *2(e)] (4.13)

where i 1 is given by Eq. (2.5) and * 2 is given by Eq. (2.9). If we substitute

Eq. (4.13) into Eq. (4.12) and use Eq. (3.8) to obtain the statistical average

of the right-hand side of Eq. (4.12), the result is

*

F(P1,2 2 ) = exp[2 < 2) + <i(P 1)4i1( 2 )>] (4.14)
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If we 3ubstitute Eqs. (2.15) and (2.16) into Eq. (4.14), we obtain

L

r(plp 2 ) =exp{-4
2k2  J dz f dK K n(K;z)

0 0

[1 - exp(-K 2./k) Jo(Kpar + 2Pail]} (4.15)

In general, r is complex and spatially inhomogeneous with respect to p, and

P2- Equation (4.15) is the general expression for the MCF of a point source

located at the origin. The equation applies for a general complex ABCD

paraxial system, as specified by a and 8. For real ABCD systems, Eq. (4.15)

becomes identical to the corresponding results of Ref. 2.

For some applications, knowledge of the complex degree of coherence is
0 required. This quantity is given by the normalized MCF 5

(PPrpP 2 ) 112 (4.16)
[ r p-' l ) r (P-2'P-2) ]

If we substitute Eq. (4.14) into Eq. (4.16), we obtain

*,. 2 )  exp ,( (P 2) - [< ( )2> + < (2)12>1) (4.17)
2L 2

exp(-2rk f dz f dK KOn(K;z) exp(-K2 8i/k)0 01

[I0 (2a, iPK) + I0(2aiP2K) - 2J0(KjpQ r + 2iPil)]} (4.18)
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5. Y ADIANCE STATISTICS

2For weak scintillation (i.e., 1 I), it is well known chat the

irraoiance statistics can be expressed as second-order moments of the

fie ld. 3 Here we present a general expression of the normalized variance of

izradiance of a point source located at the origin

2 1 2> (5.1)

where

*I( ) 1U(2)2 (5.2)

and

U(2) 110 (p) exp[iI(P) + 2( )] (5.3)

If we substitute Eqs. (5.2) and (5.3) into Eq. (5.1), making use of Eqs. (4.1)

and (3.8), we obtain through terms through second order in the fluctuations

a2(p) = exp[4, 2 () ",] - 1 4 .x2 ()> (5.4)

where .× (p) is given by Eq. (4.10). Effects that cause beam broadening in

the output plan, (e.g., wave front tilt) are contained identically in ,I2 > and

1> 2. Thus, the normalized variance o2 is independent of such effects and

reflects the focusing/defocusing properties of the random inhomogeneities only

along the optical path.

For example, consider a point source located at distance z, to the left

of a lens of real focal length f and Gaussian radius a. We will determine the

on-axis irradiance variance at a distance z2 to the right of the lens. We

will assume that the intervening space between the lens and point source is

filled with a turbulent medium, which is characterized by the Kolmogorov

spectrum.
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For p = 0 and the Kolmogorov spectrum [Eq. (4.10)], we obtain

2L 2K-8/32

<x2 (0) 0.652 k2 f dz C2 (z) f dK K exp(-K 2i/k)
0 0

[ - cos(K 2r /k)] (5.5)
r

0.326 k 7 / 6 dz C (z) (Z) 5/6W(z) (5.6)
0 n r

where

W(Z) = f (1 - cos x) exp[-p(x)x]
0 x

= F(-5/6){( 5 / 6 - (1 + 12)5/12 cosj5/6 arctan(I/u)]) (5.7)

8.(z)

B(z) Bi(z) (5.8)
ar~

and r(...) is the Gamma function.6 For real ABCD systems, j = 0 and Eq. (5.6)

yields the results given in Ref. 2. For p << 1, Eq. (5.7) yields

W(z) . - r(-5/6)cos(5t/12) = 1.73, and for p >> 1, Eq. (5.7) yields
W(z) - - (5/12)r(-5:') 7/6 2.78 -7/6

Equations (5.6)-(5.8) are the general expressions for the on-axis log-

amplitude variance for the Kolmogorov spectrum. These equations are valid for

an arbitrary complex ABCD system, as specified by O(z). The quantity W(z) is

an additional weighting function that results from the optical system. In

contrast to the results for real ABCD systems,2 no singularities result for
E complex ABCD systems.

To be specific, we consider two well-known examples of practical

interest: imaging and Fourier transform propagation geometries.
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5.1 IMAGE PLANE VARIANCE OR IRRADIANCE

Here we have

1 1 1
21 2 2

For simplicity, we assume that C2 1 0 only between the point source and the
n

lens. It is straightforward to show that2

2izlz

B 1 (5.9a)
ka 2

and for z z I

BOz =z (5.9b)

and

B zz 2 2iZl1Z 2 (5-90zzL Z Z k 2  1 (59c)

B 2( )

Thus, for z ! z I

_ 2 (5.10a)gr : I-Z •

and

z2k2
. 2 k2 (5. lob)i 2z 2

1

Hence, from Eq. (5.8), we obtain

a(z/z 1 )

1 -

2 1

where

k2
a - (5.12)

2z 1

27

...... -Nilmi~a i l il i l li ~ a 10



Over the range of integration in Eq. (5.6), where the integrand is non-zero,

z -zl, and, hence, p -a. Thus, when the point source is in the far field of

the lens (z, >>k a ), i >> I over the range of integration. Conversely, for

near-field conditions (z < ka2 ), p >> 1 over the range of integration. As a

result, the asymptotic limits for the on-axis log-amplitude variance, for
2

constant Cn, are given by

<X2> 0.564 k7 /6 C2 f 1 dz 6(z) 5 / 6

n 0 r

= 0.124 k7/6 C2 z11/6 Z >' ka2 (5.13)n 1 1

and

2> = 0.906 k/6 C2 (z)5/6 (z)]-7/6(xk n f rz82) f~)

S11/6(2z1/k )7/6

0.612 k7/6 Cnz 1  1z 1 << k a (5.14)

Equation (5.13) is just the spherical wave variance obtained for line-of-sight

propagation over a distance zj, whereas Eq. (5.14) is proportional to this

variance multiplied by an averaging aperture factor (z1/k o2)7/6 << 1. We can

explain these results by noting that, for weak scintillation conditions, the

transverse irradiance correlation length for propagation over a distance z, is

of the order (zl/k) I/2 . For an imaging geometry, light incident on the lens

from the left converges toward the image point on the right. Then, for far-

field conditions [o << (zl/k)1 /2], the entire lens lies within a single

correlation patch, and no aperture averaging is expected. For near-field

conditions [o >, (zl/k) 1/2], many independent correlation patches are

contained over the imaging lens, resulting in a reduced spherical wave

variance at the image point. For the Kolmogorov spectrum, this reduction or

aperture averaging factor is proportional to the -7/3 power of the number of

independent correlation patches over the aperture. 3
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Equation (5.6) has been integrated numerically for arbitrary a ka 2/2z

In Fig. 3, we present a plot of <X 2>a/<X2 > as a function of a.

5.2 FOURIER TRANSFORM PLANE VARIANCE OF IRRADIANCE

Here, we consider the case where the point source is in the left-hand

focal plane and the observation point is in the right-hand focal plane of a

lens of real focal length f and Gaussian radius o. It is straightforward to

show that
2

B = f (1 - 2fi (5.15a)

and for z < f

BOz z (5.15b)

and

B B + 2zfi (5.15c)zL k2

Thus, for z _ f, we obtain

za2 + (1 -

r 2 (5.16a)l+a

anld

2Bi az (5. 16b)

f(1 + a2)

where

a : k2 /2f

Hence, from Eq. (5.8), we obtain

a(z/f)
S=2 z) (5.17)
a + (1 - )
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Fig. 3. Normalized Variance of Irradiance as a Function of "a" for Image
Plane and Fourier Transform Plane Propagation Geometries. The
quantity a = ka /2z for the image plane geometry and ko /2f for the
Fourier transform plane geometry.
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Examination of Eq. (5.17) reveals that in both the near field and far field of

the transform lens, / B </r (< 1. In the far field, r  z(1 - 2), whereas

in the near tiela, b r z. As a result, the asymptotic limits for the Fourier
r2

plane on-axis log-amplitude variance are given by (for constant C )

"×2= 0.124 k7 /6 C2z 11/6 ko2  (5.18)

n 11

and

<x2> = 0.307 k7 /6 C2 z 11/6 << ko2  (5.19)

Equations (5.18) and (5.19) reveal that, in the far field (near field) of

0 the transform lens, the on-axis variance of log-amplitude is given by the

spherical wave (plane wave) variance for direct propagation cver a distance

z1 .3 In contrast to the image-plane log-amplitude variance, no aperture

averaging effects are obtained in the transform plane for near-field

conditions. These asymptotic results can be explained as follows. In the far

field, the wave impinging on the lens is nearly planar, hence, the resulting

field on the right-hand side of the lens is approximately a spherical wave

converging towards the focal point. Furthermore, in the far field, a <<

(z/k) I 2 , and no aperture averaging is expected. Conversely, in the near

field of the transform lens, the wave on the right-hand side of the lens is

nearly collimated (i.e., a plane wave propagating parallel to the optic

axis). As a result, the light that arrives on the optic axis in the transform

plane results from a small region, of characteristic size, of the order

(f/k) 1 /2 , about the axis of the lens. That is, the light arriving at a point

on the optic axis in the transform plane is nearly planar and emanates from a

region on the order of a single correlation patch in the plane of the lens.

Thus, no aperture averaging effects are to be expected.

For arbitrary values of a ko 2/2f, Eq. (5.6) has been integrated

numerically. The results are plotted in Fig. 3. These results indicate mild
(

aperture averaging for a < I.
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6. ADAPTIVE OPTICS AND ABCD SYSTEMS

In this section, we present some results concerning the performance of

adaptive-optics systems in an ABCD paraxial optical system between the input

and output planes. For simplicity, we consider real ABCD systems, although

the methods outlined here can be used directly to obtain the corresponding

results for complex ABCD systems. To successfully implement adaptive-optics

correction to either a laser transmitter system or to an imaging system,

accurate measurements must be made of the phase errors associated with the

appropriate propagation path. 7 Then, according to the principle of

reciprocity, if the appropriate correction (i.e., the negative of the measured

errors) is applied, the performance of the system will improve

significantly. We consider conventional phase-conjugate adaptive-optics

systems, where a beacon signal provides an estimate of the desired phase

information. We assume that the beacon signal is a spherical wave that

originates from some point in the output plane. Sometimes, the beacon

location originates at the object of interest (i.e., the aim point of a laser

transmitter or the object of the imaging system), and significant adaptive-

optics improvement can be expected. Conversely, for some applications, the

object of interest is moving relatively Last. Therefore, if light emitted

from the object is used as a beacon, the adaptive-optics improvement is

limited, because the beacon signal will propagate through a portion of the

atmosphere different from that where adaptive-optics correction is desired.7

These and other effects result in the various anisoplanatic degradation

discussed in the literature.
7 ,8

To be specific, we consider an adaptive-optics laser transmitter and seek

to determine the resulting mean irradiance obtained at some point PI in the

output plane, where the beacon phase information originates from a point

source located at some other point 22 in the output plane. For real ABCD

systems, the mean irradiance at p, is given by2

k [ 2 f d2 r exp(- - p-E) K(r) rc(r) (6.1)
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where

2 * 1 x( ikA 62

K(r) z f d R Ui(R + )U(R - )exp(- -n-- r.R) (6.2)

rc(r) = <exp[bc(r1, 1 ; 2 ) + c(r2,P1;22)]> (6.3)

Ui is the input wave function, A and B are the corresponding matrix elements

for propagation through the entire ABCD system, and

Oc (r,p;p 2 ) = *(r,p) - iSB(r , 2) (6.4)

is the "corrected" turbulence-induced wave function. In Eq. (6.4)

+() = 01(rp) + 02(,p) (6.5)

is, through terms of second order in the fluctuations, the Rytov approximation

to the field at r in the input plane resulting from a point source at 21 in

the output plane, and SB(r,2 2) is the phase of the beacon field at r resulting

from a point source located at 22 in the output plane. The laser and beacon

are assumed to have the same wavelength. Note that in phase-conjugation

adaptive-optics imaging systems, part of the optical transfer function imposed

on the system resulting from the random medium is also given by rc -

For a given input wave function Ui and ABCD system, the deterministic

quantity K, given by Eq. (6.2), can be obtained in a straightforward manner.

In the remainder of this section, we concentrate on evaluating the statistical

quantity r c, the "corrected" mutual coherence function. If we assume that the

beacon phase is a zero-mean random variable, application of Eq. (3.8) to Eq.

(6.3) yields through terms of second order in the fluctuations that

r c = exp (-<I c2> + F(r ,r2,2.1 ;22 )]  (6.6)
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where

F(r 1,L2 ,P I;P2) : < ci(ri,pi;P-2)  'ci('2 , I;P-2)> (6.7)

and

4c(rP;P2) = *i(r,p) - iSB(r,p 2 ) (6.8)

In obtaining Eq. (6.6)-(6.8), we have used the fact that for real ABCD systems

2Re<o 2 > + (0 1i2 = 0

which can be obtained directly from Eqs. (2.15) and (2.16) for p P = 0. We have

40 also used the fact that from statistical stationarity, <X(r 121)SB( r,22)>

<x(x 2,P1)SB(r2,P 2 )>, and <S(r1,21)SB(rl,p 2 )> = <S(r 2 ,121)SB(r2 ,2)>.

Upon substituting Eqs. (6.7) and (6.8) into Eq. (6.6), neglecting the

correlation between phase and log-amplitude, we can be show that

1 1
rc = exp [ -Dw(r) - Ps B(r) + d(r,p)] (6.9)

where

DW (r) = - x(r2,pi)] > + <[S(rIpI) - S(L2 ,PI)]2> (6.10)

is the wave structure function of a point source located at p, in the output

plane.
3

DSB(r) = <[SB(r IP 2 ) - SB('2'2)1 2> (6.11)

is the phase structure function of the beacon point source located at P2 in

the output plane, and'
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d(r,p) <[S(r1 ,21) - S(r2,21 )]ISBI(rV22  - SB(r2,P2 )]>

I DS (r,p) + DSS (-r,) - 2Dss (2)1
SB SsB SB (6.12)

where

DSsB (r,p) = <IS(rJiP1 ) - S(r2 ,P2) 2 > (6.13)

is the structure function for point sources located at p, and 22 in the output

plane evaluated at the points r, and r2 in the input plane [in Eq. (6.12),

DSSB () DSSB (O,p)]. The quantity d is the correlation function between the

residual phase difference of the object wave across the input plane and the

beacon wave across the input plane. Because they are statistically

stationary, Dw and DsB are independent of the location of the point source, in

contrast to d, which is a function of r and p. If the beacon is collocated

with the object, and the measured beacon phase is a perfect estimate of the

object phase, rc = exp(-! DA), where DA is the log-amplitude structure

function. This results in the best possible performance that can be obtained

with conventional phase conjugation adaptive-optics.

The structure functions that appear in Eqs. (6.10)-(6.13) can be obtained

directly from the results of Sections 2 and 4. By substituting Eqs. (2.16)

and (2.17) into Eqs. (4.2) and (4.3), we can show that for isotropic power

spectra

DW(r) = 8,2k2  f dz 5 dK KOn(K;z) 11 - J0 (Ka1r)] (6.14)
0 0

D SB(r) = 412 k2 0dz f dK K n(K;z) 11 J0 (KaL1r)]

I 1 Cos( (6.15)
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and

L k2B

DSS B(r) = 412k2 0 J dz 0 fdK Kon(K;z)I 1 + cos(- )

[1 - J0 (KlaxE .-2-21) ]  (6.16)

where E 1 - L21 P= P112

B zL(z)al z)  = B (6.17a)

B B OZW (6.17b)

and

B Oz(z) B zL(z)
8(z) = BZ (6.17c)

Equations (6.14)-(6.77) and Eq. (6.9) represent the general solution for the

corrected MCF in a real ABCD system for use in calculating the adaptive-optics

mean-irradiance profile when correlations between phase and log-amplitude are

neglected (the usual case considered in the literature). If this latter

restriction is relaxed, it can be shown that r contains an additional
c

multiplicative factor of

cos BS X( 1l2;21P22) - B3 x(2,l;L1,P2)]

where BS  , the correlation function of the beacon phase and object point log-

amplitude, is given by

BSBX(r I r2 ; 1, 2 ) : 2 2k2;Ld d GKz
B, r1E ;-'- - dz dK KO n(K;z)

0 0

sin ()J (KcaL + 0221)
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Within the framework of the present theory, the inclusion of the above term

in r provides the coupling between phase-amplitude and log-amplitude inC

adaptive-optics systems. For certain applications (e.g., propagation

conditions where the interaction between atmospheric turbulence and thermal

blooming is important), the inclusion of this term is necessary to obtain a

self-consistent analysis.

As an example, we consider the Kolmogorov spectrum in the inertial

subrange3 for propagation conditions where geometrical optics is valid. The

cosine terms appearing on the right-hand side of Eqs. (6.15) and (6.16) can be

replaced by unity. As a result, we obtain

r c(r) = exp[-S c(r)] (6.18)

where

S (r) = 2.91 k2 f dz C2 (z) [(2r)
5 /3 + (alp) 5/3

c-0 n 21

1 l2 + 15/3 1 5/3]
- 2L + a1 - 102L - Q121 (6.19)

For line-of-sight propagation, aI 1 - z/L and a2 = z/L, which, when

substituted into Eq. (6.19), yields

S (r) 2.19 k f dx C2 (z){[r(1 - z/L) 5 / 3 + (ez) 3

c0

2 Ir(1 - z/L) + ezi 5 / 3  Ir(1 - z/L) - ezl 5/3}  (6.20)

where 0 = p/L is the vector angular separation between the beacon and the

object point. Equation 6.20 is identical to previous results found in the

literature for common or angular anisoplanatism.
8
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7. CONCLUSIONS

Within the framework of the paraxial and the second-order Rytov

approximation, we have derived explicit general expressions for calculating

all second-order statistical moments of an optical wave propagating in a

random media through an arbitrary complex paraxial ABCD system. These

expressions are extensions of the corresponding results that apply both to

line-of-sight propagation3 and propagation through real ABCD systems.2 The

approach in this report (i.e., Huygens-Fresnel formulation of the field) uses

complex ABCD matrices. This approach provides the most general form for

analyzing propagation of any generalized paraxial wave through a complex

paraxial optical system in the presence of random inhomogeneities distributed

arbitrarily along the optical path. According to the Huygen's integral

approach, an arbitrary optical wave propagated through an arbitrary complex

paraxial system in a random medium, including all diffraction effects (even

those resulting from the "Gaussian" limiting apertures), can be accomplished

in one step, with knowledge only of the ABCD matrix elements of the system.

Even though Huygen's integral has been used extensively in the literature, its

general range of validity is perhaps not as well understood as it ought to be.
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APPENDIX: DERIVATION OF F1, F2, AND F3

In this appendix, we outline the derivation of the basic statistical

quantities F1 , F2 , and F3 introduced in Section 2. The method used is similar

to that given in Ref. 9. The basic difference is that the zeroth-order

paraxial Green function, rather than the free space function, is given by Eq.

(2.8).

When the optical field in the absence of the inhomogenelties is point

sources, the field U0, as obtained from Eq. (2.4), is given by

Ue(rZ) = BCexp 2 e Dor - 2r r" + A o2) (A-I)
o( 1, BOD)r 1

where C1 = -ik/2m and the point source is located at (r,O).

A.1 DERIVATION OF F1

If we substitute Eqs. (2.8) and (A-i) into Eq. (2.10), taking the

statistical average and rearranging terms, we obtain

C1 k
4 

- ikL
2 u2 'L)> - (4-0) 2[ d E

r  dyr2 B '2 )(B Oz2 B zlL ) -

1 i 2 212 z ~ 1
SH(1,r 2 ) exp 2BOz k (A ozr 2  2rr 2 + DOz2 r)

x exp I2B-k (Alr 2 -2£ " + DZ+L) (A-2)
2BL I L 1 2r1 L

where

B 2 < (r1) (r2)>

is the correlation function of the fluctuations of the dielectric function

[note that Bn = <n(r )n(r2)> 4B I and
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I t 

I

H r.( 1 ik ~A 2 2)i

,2  z2 z- exp 2B (Az2zl 1 r - 2r2"-1 + Dz2z1r 1A-3)

Next, we expand B in terms of its two-dimensional Fourier transform
3

B (I - r2) : d2K F (K,z1 - z2 ) expl-iK.(r 1 - (A-4)

The quantity F (K,Az) is non-zero only for azAI S scale length of the

inhomogeneities. We assume that the largest scale length is much smaller than

any propagation distance of interest (i.e., the smallest distance between

opti7al elements). Consider the integration over z2. We only get a non-zero

contribution to this integral for Izl - z21 - 0. Thus, Az 1z2  D z2 1, and

Bz  0. Hence, the function H (rr 2 ) is given by

IZ2

H 1im -ik(r2  r 1)H 2B 0Eexp( 2B

2i- 6(r - L2 ) (A-5)

where 6(r) is the two-dimensional delta function. To obtain this limit, we

assume that k has a small imaginary part, i.e., the wave propagates in a

slightly absorbing medium. Substituting Eqs. (A-4) and (A-5) into Eq. (A-2)

and noting that the z-dependence of the exponential factor is slowly varying

with respect to that of FC1 we obtain

C 1k 4 (2ri/k)e
- ikL L 2

(U2(pL)> 2 f d2K 0 dzI f d r(4,)2  0

- (B0 B 1 exp[ (A r2 - 2r.re+p- - 2)1
OZ Io -12 Oz 1 Dorl0 ]

exp[- ik (A 1 2 _ 2r1.p + DzLp2) 2 f dz F (K,z) (A-6)
2BzL 1 0
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where z2  z I in the exponential terms on the left-hand side of Eq. (A-6),

and, because F C 0 for z scale length of the fluctuations, the upper limit

on the integral over z can be extended to infinity. From Ref. 3, we have

f FE (K,z)dz = N (K)0 -

4 n(K) (A-7)

where n(K) is the three-dimensional spectral density of the index of refrac-

tion fluctuations evaluated at K_ = 0.

Substituting Eq. (A-7) into Eq. (A-6), we obtain

L d
<U2 (2,L)> C 1k 4(2wi/k)e

ikL  dz j d2K n (K)I (A-8)

where

, ,Bo~zA- ep-kAOz 2 D zL 2

1=( B B ) exp- L( r + -- p iJ (A-9)zzL 2 BOz zL

and

f2  2 r 2 A-)
zL Oz 1z zL

Because MOL MozMzL, where Mz lz 2 is the ABCD matrix for propagation from z I

to z2, we can show that AzLBOz + BzLDOz BOL and, thus

J = d2 r exp - k 2 ik +
1-r2 1  B Oz BzL -Ell

fBzzEk r 2

BL Oz zL L R

where B is given by Eq. (2.18). To ensure convergence of this integral, we

have again assumed that Imk < 0. Combining Eqs. (A-l0), (A-11), and (A-8) and

using the relations
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B -A B -B AzL Oz OL Oz OL

and

BOz B OLDzL B zLDOL

we finally obtain

L

<U2 (2 ,L) -U0 (P,L) k2 f dz f d2 K n(K;z) (A-12)
0

where

1ikL ik O

Uo(p,L) B exp f- ik (Aor2 _ 2r.+ DO ) (A-13)
0 BOL 2B OL

is the field of the point source in the absence of the inhomogeneities, and we

nave tacitly assumed a slowly varying dependencc of 0n on propagation

distance. Thus, from Eqs. (A-12), (A-13), (2.12), and (2.11a), we obtain the

results given by Eq. (2.15).

A.2 DERIVATION OF F2 AND F3

The derivation of both F2 and F3 follows exactly the same steps that

result in Eq. (19) of Ref. 9, except that Eq. (2.8) is used as the zeroth-

order Green function instead of the free space Green function. The final

result of such a procedure leads directly to Eqs. (2.16) and (2.17).
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural

control; high temperature thermomechanics, gas kinetics and radiation; cw and

pulsed chemical and excimer laser development including chemical kinetics,
spectroscopy, optical resonators, beam control, atmospheric propagation, laser

effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,

applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on

materials, lubrication and surface phenomena, thermionic emission, photo-

sensitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;

microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;

atomic time and frequency standards; antennas, rf systems, electromagnetic

propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,

alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture

mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray

physics, wave-particle interactions, magnetospheric plasma waves; atmospheric

and ionospheric physics, density and composition of the upper atmosphere,

remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space

instrumentation.
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